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DYNAMICAL SYSTEM ANALYSIS OF REYNOLDS STRESS CLOSURE EQUATIONS

SHARATH S. GIRIMAJI∗

Abstract. In this paper, we establish the causality between the model coefficients in the standard
pressure-strain correlation model and the predicted equilibrium states for homogeneous turbulence. We
accomplish this by performing a comprehensive fixed point analysis of the modeled Reynolds stress and
dissipation rate equations. The results from this analysis will be very useful for developing improved pressure-
strain correlation models to yield observed equilibrium behavior.

Key words. turbulence modeling, pressure-strain modeling

Subject classification. Fluid Mechanics

1. Introduction. The equilibrium states of benchmark turbulent homogeneous flows have long been
used to develop, calibrate and validate pressure-strain correlation models, Speziale et al (1991). The bench-
mark flows have typically been plane shear and strain-rate dominated flows such as plane strain and ax-
isymmetric expansion/contraction. When these pressure-strain models are used to compute slightly more
complex flows which contain the effects of both rotation and strain (elliptic flows), the model results are
inconsistent with linear stability theory and direct numerical simulation (DNS) data, (Speziale et al 1996,
Blaisdell and Shariff, 1996). Improved predictive capability of elliptic flows requires a better understanding
of the physics of turbulence as well as the dynamics of the model equations. This calls for an intimate un-
derstanding of the model equations, especially the causality between the model constants and the predicted
long-time behavior. For the special case of shear flow in rotating coordinate frame, the equilibrium state
predicted by two-equation turbulence models and linear pressure-strain models have been investigated by
Speziale and Mac Giolla Mhuiris (1989, 1990). These studies have lead to models with better predictive
capability in those selected flows.

The objective of the present study is to perform dynamical system analysis, i.e., fixed point and bifurca-
tion analyses, of the anisotropy, kinetic energy and dissipation closure equations with aid of representation
theory for all elliptic flows (with two-dimensional mean velocity field) to establish for the first time exact
(analytical) relationship between turbulence model (pressure-strain correlation and dissipation equation)
coefficients and the asymptotic behavior of the equation. The results from our study enables us to classify
completely the turbulent asymptotic state predicted by a model as a function of the mean strain and rotation
rates. The knowledge of this causality can be used in closure model development to yield the required asymp-
totic (equilibrium) behavior. Quasilinear pressure-strain model which includes the entire class of Launder,
Reece and Rodi (1975), referred to as LRR, models are considered here. This study also sheds light on the
strategies that can be employed to develop non-equilibrium algebraic Reynolds stress models starting form
the Reynolds stress closure equations.

In this study we will restrict ourselves to turbulence in inertial frames which includes elliptic flows.
Turbulence modeling in non-inertial rotating frames will be considered in future work.
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2. Turbulence Closure Equations. In homogeneous turbulence, the exact Reynolds stress transport
equation in an arbitrary inertial reference frame is given by

duiuj

dt∗
= Pij − εij + φij .(1)

The terms, respectively, are the time rate of change, production (Pij), dissipation (εij) and pressure-strain
correlation (φij) of Reynolds stress:

Pij = −uiuk
∂Uj

∂xk
− ujuk

∂Ui

∂xk
;(2)

εij = 2ν
∂ui

∂xk

∂uj

∂xk
; φij = p(

∂ui

∂xj
+

∂uj

∂xi
).

The production and dissipation rate of turbulent kinetic energy are, respectively, P = 1
2Pii and ε = 1

2εii. In
high Reynolds number flows, dissipation is generally treated as being isotropic:

εij =
2
3
εδij .(3)

Closure models are needed for the pressure-strain correlation (φij) and dissipation rate (ε).
In this study, we focus on the quasilinear class of pressure-strain correlations models of the general form:

φij = −(C0
1ε + C1

1P )bij + C2KSij +(4)

C3K(bikS∗jk + bjkS∗ik −
2
3
bmnS∗mnδij) +

C4K(bikW ∗
jk + bjkW ∗

ik),

where the C’s are numerical constants and

S∗ij =
1
2
(
∂Ui

∂xj
+

∂Uj

∂xi
); W ∗

ij =
1
2
(
∂Ui

∂xj
− ∂Uj

∂xi
);(5)

bij =
uiuj

2K
− 1

3
δij .

We choose this form of the pressure-strain model for two reasons. First, this form of the model permits
analytical treatment of the asymptotic behavior. Second, this is the form most frequently used in practical
Reynolds stress closure calculations: this form includes all linear-pressure strain models (e.g. LRR model)
and some of the non-linear models (such as the quasi-linear SSG model) can also be reduced to this form
near equilibrium. For the LRR model, the coefficients are

C0
1 = 3.0; C1

1 = 0.; C2 = 0.8; C3 = 1.75; C4 = 1.31

The coefficients for the Gibson and Launder (1978) model are

C0
1 = 3.6; C1

1 = 0.; C2 = 0.8; C3 = 1.2; C4 = 1.2

For the quasilinearized SSG model, the coefficients are

C0
1 = 3.4; C1

1 = 1.8; C2 = 0.36; C3 = 1.25; C4 = 0.4

The anisotropy evolution equation can be derived from the Reynolds stress equation and the pressure
strain correlation model:

dbij

dt∗
= −bij(L0

1

ε

K
− L1

1bmnS∗mn) + L2S
∗
ij(6)

+L3(bikS∗jk + bjkS∗ik −
2
3
blmS∗lmδij)

+L4(bikW ∗
jk + bjkW ∗

ik)
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The pressure-strain correlation model coefficients are redefined as:

L0
1 ≡ C0

1 − 2; L1
1 ≡ 2C1

1 + 4; L2 ≡ C2 − 4
3
;(7)

L3 ≡ C3 − 2; L4 ≡ C4 − 2.

The turbulent kinetic energy evolves according to

dK

dt∗
= P − ε,(8)

and the modeled evolution equation of dissipation is

dε

dt∗
= Ce1

ε

K
P − Ce2

ε2

K
.(9)

The model constants Ce1 and Ce2 are typically given values of 1.44 and 1.90 respectively.
Equations (6), (8) and (9) constitute the second order closure equations in homogeneous turbulence.

These equations can be non-dimensionalized using the norm of the deformation rate tensor:

η = S∗ijS
∗
ij + W ∗

ijW
∗
ij ,(10)

The non-dimensional quantities are

Sij = S∗ij/
√

η; Wij = W ∗
ij/
√

η;(11)

dt =
√

ηdt∗; ω = ε/(
√

ηK),

where ω is the relative strain rate, i.e., the ratio of the turbulence to mean flow strain rates. In the
above equations, asterisk is used to represent dimensional quantities and the corresponding non-dimensional
quantity is written without the asterisk. In dimensionless time, the anisotropy transport equation is

dbij

dt
= −bij(L0

1ω − L1
1bmnSmn) + L2Sij(12)

+L3(Sikbkj + bikSkj − 2
3
bmnSmnδij)

+L4(Wikbkj − bikWkj).

Two points are worthy of note here. In dimensionless time the anisotropy evolution is (i) independent of the
magnitude of deformation (η) and depends only on the ratio of strain to rotation rate; and (ii) dependent only
on the relative strain rate and not individually on kinetic energy and dissipation. The evolution equation of
the relative strain rate, ω, is easily obtained from those of the turbulent kinetic energy and dissipation:

dω

dt
= −2ω(Ce1 − 1)bmnSmn − (Ce2 − 1)ω2.(13)

The first term on the right hand side of equation (13) represents the production of the relative strain rate
whereas the second terms represents its destruction.

In homogeneous turbulence, the above non-linear dynamical system of equations represents an initial
value problem. The Reynolds stress, kinetic energy and dissipation may grow unbounded from their initial
values. However, it is known that for some benchmark flows such as (homogeneous) plane shear, plane strain
and axisymmetric expansion/contraction the normalized turbulence parameters bij and ω evolve from their
specified initial conditions according to the equations and asymptote to finite-valued fixed points (equilibrium
turbulence), provided such a state exists. The fixed point or the equilibrium state of turbulence is described
by

dbij

dt
= 0; and

dω

dt
= 0.(14)
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2.1. Representation theory. We are interested in the asymptotic behavior, long after the influence
of the initial conditions has diminished. At this stage of flow evolution, it can be argued that the Reynolds
stress can be a tensorial function of only the mean strain and rotation rates. Representation theory can
then be invoked to determine the most general tensor function that can be constructed with the strain
and rotation rates. The most general, physically permissible tensor representation for the Reynolds stress
anisotropy in terms of the strain and rotation rates in the case of two-dimensional mean flow is given by
(Girimaji 1996a)

bij = G1Sij + G2(SikWkj −WikSkj)(15)

+G3(SikSkj − 1
3
η1δij),

where,

η1 = SijSij ; and η2 = WijWij .(16)

In the above equations G1 – G3 are yet to be determined scalar functions of the invariants of strain and
rotation rate tensors. During the evolution of bij , G1 – G3 will be functions of time as well. Also note that,
by definition, η1 + η2 = 1.

The representation for bij is now substituted into equation (12) and the resulting equation is simplified
using the following identities valid for all two-dimensional mean flows:

SikSkj =
1
2
η1δ

(2)
ij ;WikWkj = −1

2
η2δ

(2)
ij ;(17)

SikSklSlj =
1
2
η1Sij ;SikWklSlj = −1

2
η1Wij ;

WikSklWlj =
1
2
η2Sij ;Smnbmn = G1η1,

where δ
(2)
ij and δij are the two and three dimensional delta functions respectively. We retain terms up to

quadratic power (in strain and rotation rate) in their original form and invoke their two-dimensional property
only when these terms appear in cubic and higher power terms. For example, SikSkj is retained as such
when it appears by itself: whereas, when it appears as a part of a cubic or higher power term we invoke
SikSkj = 1

2η1δ
(2)
ij to write SikSkjSjl = 1

2η1Sil. By invoking the two-dimensional property for reducing only
cubic and higher power terms, it is hoped that the three-dimensional effect is approximately accounted for
upto the quadratic term. Using these rules, we write

Sikbkj + bikSkj − 2
3
bmnSmnδij =

1
3
η1G3Sij(18)

+2G1(SikSkj − 1
3
η1δij)

Wikbkj − bikWkj = −G1(SikWkj −WikSkj)

+2η2G2Sij .

Substitution of equation (15) into equation (12) yields the anisotropy evolution equation in terms of coef-
ficients G1 - G3. After substitution, the coefficient of each tensor on either side of equation (12) has to be
equal due to the linear independence of the generators of the integrity basis. Comparing the coefficients of
the three representation tensors on either side we get

dG1

dt
+ G1(L0

1ω − L1
1G1η1) = L2 +

1
3
L3G3η1(19)
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+2L4η2G2

dG2

dt
+ G2(L0

1ω − L1
1G1η1) = −G1L4,

dG3

dt
+ G3(L0

1ω − L1
1G1η1) = 2G1L3.

Equations (19) along with (13) constitute the new non-linear system of evolution equations for Reynolds
stresses in homogeneous turbulence.

3. Dynamical System Analysis. Fixed point and bifurcation analyses of the new system is now
performed.

The fixed point equations (14) can now be restated as

dG1

dt
=

dG2

dt
=

dG3

dt
=

dω

dt
= 0.(20)

Using the notation that the fixed point values are denoted by a superscript 0, the algebraic fixed point
relations are (using bmnSmn = G1η1):

0 = 2ω0(Ce1 − 1)G0
1η1 + (Ce2−1 − 1)(ω0)2(21)

0 = −G0
1(L

0
1ω − L1

1G
0
1η1) + L2 +

1
3
L3G

0
3η1

+2L4η2G
0
2

0 = G0
2(L

0
1ω − L1

1G
0
1η1) + G0

1L4

0 = G0
3(L

0
1ω − L1

1G
0
1η1)− 2G0

1L3

This system of equations leads to the five fixed points:

[ω0 = 0, G0
1 = 0, L2 + 1

3L3G3η1 + 2L4η2G2 = 0];

[ω0 = 0, G0
1 = − 1√

η1
Q1, G0

2 = L4
L∗η1

, G0
3 = − 2L3

L∗η1
];

[ω0 = 0, G0
1 = + 1√

η1
Q1, G0

2 = L4
L∗η1

, G0
3 = − 2L3

L∗η1
];

[ω0 = −2Ce1−1
Ce2−1G0

1η1, G0
1 = − Q∗

√
η1

, G0
2 = L4

L∗η1
, G0

3 = − 2L3
L∗η1

];

[ω0 = −2Ce1−1
Ce2−1G0

1η1, G0
1 = + Q∗

√
η1

, G0
2 = L4

L∗η1
, G0

3 = − 2L3
L∗η1

].

In the above equations Q1 and Q∗ are defined as

Q1 =

√
−L2

L1
1

+
2
3
(
L3

L1
1

)2 − 2(
L4

L1
1

)2
1− η1

η1
,(22)

Q∗ =

√
−L2

L∗
+

2
3

L2
3

L∗2
− 2

L2
4

L∗2
1− η1

η1
,

where

L∗ = 2L0
1

Ce1 − 1
Ce2 − 1

+ L1
1.(23)

It should be pointed out that a negative value of G0
1 is consistent with a gradient-diffusion type effect and

energy flow from the mean to the fluctuating velocity field. A positive value would imply count-gradient
diffusion and a negative value of production – i.e, flow of energy from the turbulent fluctuations to the mean
flow.
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3.1. Bifurcation analysis. The qualitative behavior of the solution of a set of differential equations
may depend on the parameters of the system. For example, the nature and even the number of fixed points
of a system can change with changing parameter values (bifurcation). The parameters of the present system
of equations are the constants of the pressure-strain correlation model and the mean strain-rate to total
deformation ratio η1. (Note that, by definition, η2 = 1− η1, and hence η2 is not considered an independent
parameter.) In this paper, we restrict our attention to bifurcation due to η1 alone for a given pressure-strain
correlation model.

The system has five fixed points when η1 is such that both Q1 and Q∗ are real. If only one of Q1 or Q∗

is real, then the system has three fixed points. If both are not real, then there is only one fixed point. It is
important to establish the conditions under which Q1 and Q∗ are real.

For Q1 to be real we require

−L2

L1
1

+
2
3
(
L3

L1
1

)2 − 2(
L4

L1
1

)2
1− η1

η1
≥ 0,(24)

implying that η1 should be greater than a critical value ηa
1 :

η1 ≥ ηa
1 =

2L2
4

−L2L1
1 + 2

3L2
3 + 2L2

4

.(25)

Similarly, Q∗ is real only when

η1 ≥ ηb
1 =

2L2
4

−L2L∗ + 2
3L2

3 + 2L2
4

.(26)

For all the pressure-strain correlation models considered in this paper, L2 is negative and L∗ > L1
1 leading

to

1 > ηa
1 > ηb

1 > 0.(27)

When η1 is in the interval (1, ηa
1 ), the system has five fixed points. The system has three fixed points in the

interval (ηa
1 , ηb

1). Finally, for η1 < ηb
1, the system has only one fixed point.

In summary, the nonlinear set of equations governing the (modeled) evolution of the Reynolds stress has
two bifurcation points ηa

1 and ηb
1. The behavior of the solution for various values of η1 depends upon the

stability of the various fixed points.

3.2. Stability of fixed points. In order to establish the stability of a fixed point, we need to examine
if any small perturbation of the system away from the fixed point eventually returns to the fixed point after
a sufficiently long time. The most expeditious way of establishing this is by investigating the Jacobian of
the system at the fixed point. If an eigenvalue of the Jacobian is negative, solution trajectories are attracted
towards the fixed point along the corresponding eigenvector. On the other hand, if an eigenvalue is positive,
the solution trajectory is repelled away from the fixed point along the corresponding eigenvector. For a fixed
point to be stable all the eigenvalues must be negative, so that all trajectories in the neighborhood of the
fixed point are attracted towards the fixed point. If all permissible initial conditions are attracted to the
fixed point, such a fixed point is called globally asymptotically stable. The set of all initial conditions that
ultimately evolve to a stable fixed point is called the basin of attraction of that fixed point. For a nonlinear
set of equations, such as the one considered here, it is difficult to establish the basin of attraction and will
not be attempted here. We will only seek to establish the local asymptotic stability of each of the fixed
points. First, the various types of fixed points are listed.
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1. When all the eigenvalues of the Jacobian are real and negative, then the fixed point is a stable fixed
point also called an attractor or a sink.

2. If all the eigenvalues are real and positive, then the fixed point is a source or repellor. All solution
trajectories in the neighborhood of the fixed point are repelled away from it.

3. If the eigenvalues are real with some positive and the others negative, then the fixed point is of the
saddle type. The solution trajectories are attracted towards the fixed point in some directions and
repelled away in other directions.

4. If the eigenvalues are complex and the real part is positive, then the fixed point is a spiral source.
The solution to the system fluctuates about the fixed point with the amplitude of the fluctuation
getting larger with time.

5. If the eigenvalues are complex with a negative real part, then the fixed point is a spiral sink. The
solution is oscillatory with decreasing magnitude about the fixed point.

6. If the eigenvalues are purely imaginary, then the fixed point is classified as a center. The asymptotic
solution then displays an oscillatory behavior.

The sink and spiral sink fixed points are attracting fixed points and, hence, stable. Saddle and source fixed
points are unstable.

Fixed point # 1.. This fixed point is given by

ω0 = 0, G0
1 = 0, L2 +

1
3
L3G3η1 + 2L4η2G2 = 0.

This is the only fixed point that exists for the entire range of η1 values.
The Jacobian at this fixed point is

0 0 0 0
0 0 2L4(1− η1) 1

3L3η1

0 L1
1η1G

0
2 − L4 0 0

0 L1
1η1G

0
3 + 2L3 0 0

(28)

The eigenvalues of the Jacobian are

λ1 = 0, λ2 = 0, λ3 = +
√

η1L
1
1Q, λ4 = −√η1L

1
1Q,

and the corresponding eigenvectors are

v1 = [1, 0, 0, 0],(29)

v2 = [0, 0,− L3η1

6L4(1− η1)
, 1],

v3 = [0, +
√

η1L
1
1Q, L1

1η1G
0
2 − L4, L

1
1η1G

0
3 + 2L3],

v4 = [0,−√η1L
1
1Q, L1

1η1G
0
2 − L4, L

1
1η1G

0
3 + 2L3].

Since two of the eigenvalues are zero, this fixed point is classified as a non-hyperbolic fixed point. So long
as Q is real (η1 ≥ ηb

1), λ3 is positive and λ4 is negative leading to this fixed point being a saddle and hence
unstable. When η1 < ηb

1 the eigenvalues λ3 and λ4 are both purely imaginary; the fixed point is a center and
the asymptotic solution is oscillatory. The stability of non-hyperbolic center fixed point cannot be gleaned
from a linear approximation. The stability can be evaluated only from a center manifold theory which is
not attempted here. It suffices here to say that for η1 < ηb

1, the long-time behavior of the Reynolds stress in
oscillatory.
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Fixed points #2 and #3.. These fixed points are given by

ω0 = 0, G0
1 = ± 1√

η1
Q1, G0

2 =
L4

L∗η1
, G0

3 = − 2L3

L∗η1
,

and exist only in the range η1 ≥ ηa
1 . The Jacobian at this fixed point is

0 0 0 0
−G0

1 2G∗ 2L4(1− η1) 1
3L3η1

−G0
1 0 G∗∗ 0

−G0
1 0 0 G∗∗

(30)

where G∗ = G0
1η1(L1

1 + Ce1 − 1) and G∗∗ = G0
1η1(L1

1 + 2Ce1 − 2).
The eigenvalues are given by

λ1 = −2(Ce1 − 1)G0
1η1, λ2 = 2L1

1G
0
1η1,(31)

λ3 = λ4 = L1
1G

0
1η1.

The eigenvectors are,

v1 = [
η1

L0
1

(L1
1 + 2Ce1 − 2),(32)

G0
1η1(L1

1 + 2Ce2 − 2) + 2L4η2 + 1
3L3η1

2G0
1η1(L1

1 + Ce1 − 1)
, 1, 1],

v2 = [0, 1, 0, 0],

v3 = [0,−2L4(1 − η1)
G0

1L
1
1η1

, 1, 0],

v4 = [0,
L3

3G0
1L

1
1

, 0, 1].

Since all the eigenvalues are non-zero this an hyperbolic fixed point. In all the models considered, L1
1 and

(Ce1 − 1) are both positive and η1 is positive by definition. As a result, irrespective of the sign of G0
1, some

of the eigenvalues will be positive and others negative and the fixed point is a saddle. These two fixed points
are unstable when η1 > ηa

1 and do not exist otherwise. They do not play an important role in the long-time
behavior of the Reynolds stresses.

Fixed point #4.. This fixed point is given by

ω0 = −2
Ce1 − 1
Ce2 − 1

G0
1η1, G0

1 = − 1√
η1

Q∗(33)

G0
2 =

L4

L∗η1
, G0

3 = − 2L3

L∗η1
.

This fixed point exists only for η1 ≥ ηb
1. Due to the complex nature of the Jacobian, it is difficult to obtain

all the eigenvalues and eigenvectors symbolically. However, one eigenvalue is easily obtained by inspection:

λ1 = G0
1η1L

∗; v1 = [0, 0, 1,−6
L4(1− η1)

L3η1
].(34)

The eigenvalues evaluated numerically are plotted in Figure 1(a) as a function of the parameter η1 for
the linearized-SSG pressure-strain correlation model. All of the eigenvalues are non-zero (hyperbolic fixed
point) and negative indicating that this is an attractor. (Note that the quantity plotted is the negative of
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the actual eigenvalues.) Another important point to be gleaned from the the figure is that eigenvalue λ4 is
always about an order of magnitude smaller than the other eigenvalues. This indicates that the evolution
equations evolve slowly along the eigenvector associated with λ4 and rapidly along all other direction. The
eigenvector direction corresponding to λ4 is shown in Figure 1(b) and it is almost coincident with the ω axis.
The behavior of the eigenvalues of this fixed point with LRR pressure-strain correlation model is qualitatively
and, even, quantitatively similar to that of SSG model.

Fixed point #5.. This fixed point

ω0 = −2
Ce1 − 1
Ce2 − 1

G0
1η1, G0

1 = +
1√
η1

Q∗(35)

G0
2 =

L4

L∗η1
, G0

3 = − 2L3

L∗η1
.

also exists only for η1 ≥ ηb
1. The eigenvalues calculated numerically are all positive indicating that the fixed

point is a source or a repellor and, hence, unstable.
All the stability and bifurcation results for G1 are summarized in Figure 2. The bifurcation diagram of

ω is given in Figure 3.

4. Summary and Discussion. The long-time behavior of the standard Reynolds stress closure equa-
tion depends upon the value of the parameter η1, the fraction of deformation that is strain. The asymptotic
behavior undergoes bifurcation at η1 = ηb

1. For values of η1 higher than ηb, the solution of the equation set
asymptotes monotonically to an attractor. For smaller values, the long-time behavior is oscillatory.

Asymptotic behavior for η1 > ηb
1.. The solution is attracted to fixed point 4. The production to dissipa-

tion ratio at this equilibrium state is

P

ε
(equilibrium) =

Ce2 − 1
Ce1 − 1

(36)

independent of η1. In appropriately normalized time, the turbulent kinetic energy and dissipation grow
exponentially at rates independent of η1:

d ln K

dτ
=

P

ε
− 1;

d ln ε

dτ
= Ce1

P

ε
− Ce2,(37)

where τ = ω0t.
Longtime behavior for η1 < ηb

1.. The long-time behavior in this case is dictated by fixed point 1 which
is non-hyperbolic (has zero eigenvalues). Linear analysis about the fixed point is inadequate to determine
its stability. Numerical calculations indicate that (i) ω decays monotonically (exponentially?) to zero, (ii)
G1 oscillates about zero, (iii) G2 and G3 converge to non-zero values, (iv) with decreasing η1 the asymptotic
growth rates of kinetic energy and dissipation decrease. In fact, for small enough η1 values kinetic energy
and dissipation decay in time leading to relaminarization.

Implications to pressure-strain correlation modeling.. It is reasonable to demand that future models
yield bifurcation diagrams consistent with experimentally (laboratory and numerical) observed behavior of
the Navier-Stokes equation. At the very least, for the sake of qualitative consistency with true physics, the
bifurcation points of the model equation set should coincide with that of Navier-Stokes statistics.

The DNS data of Blaisdell and Shariff (1996) appears to indicate that the asymptotic growth rate of
kinetic energy is always positive and nearly independent of η1:

d ln K

dt
≈ Const.(> 0), for 1 ≥ η1 > 0,(38)
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a result that is consistent with linear stability analysis. The lack of qualitative (or, even, quantitative) change
in the behavior of the kinetic energy growth rate appears to imply that there is no bifurcation, contrary
to model predictions. This can be interpreted as the bifurcation taking place at η1 = 0. If this is indeed
true (further work is currently underway), then, in order for the pressure strain model to be consistent with
physics we need:

ηb
1 =

2L2
4

−L2L∗ + 2
3L2

3 + 2L2
4

= 0,(39)

leading to L4 = 0, implying C4 = 2.

This should be the behavior of C4 in the limit of vanishing values of η1. The currently used values of C4

yield good agreement with data in homogeneous shear and strain dominated cases. This clearly suggests
that C4 and perhaps all other coefficients should be functions of η1 and η2. These ideas will be explored in
future works.

Non-equilibrium algebraic stress modeling.. Non-equilibrium algebraic Reynolds stress model can be
considered as the approximate solution of the Reynolds stress closure equations away from the equilibrium
state. When η1 > ηb

1, the solution approaches the equilibrium state (fixed point 4) along the invariant
manifold corresponding to eigenvector v4 for nearly all initial conditions. This is because the corresponding
eigenvalue (λ4) is much smaller than the rest (Figure 1a). (From a random initial condition, the solution
evolution along the other eigenvector directions is very rapid, so that the trajectory after a short initial stage
is nearly aligned with the slowest eigen-direction.) In Girimaji (1996b), it was suggested that the invariant
manifold of v4 be used as the non-equilibrium Reynolds stress model and a strategy for determining the
manifold was presented. When η1 < ηb

1, the strategy for non-equilibrium algebraic modeling in not yet clear.
Central manifold reduction may be the answer and that approach is currently under investigation.
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Fig. 1. (a) Eigenvalues of fixed point 4 as a function of η. (b) Components of eigenvector corresponding to eigenvalue

λ4.
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Fig. 2. Bifurcation diagram of G1. Fixed point G1
1: unstable (saddle) for η ≥ ηb

1 and center for η < ηb
1. G2, G3:

unstable (saddle). G4: stable (attractor). G5: unstable (repellor).

Fig. 3. Bifurcation diagram of ω. Fixed point ω1(= ω2 = ω3) is unstable (saddle) for η ≥ η1b
1 and stable for η < ηb

1.

ω4(= ω5) is stable (attractor).
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